« Modèle à bruit statistique » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
 
(2 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==
[[Modèle génératif]] qui est obtenu par [[apprentissage automatique]], au cours duquel est éliminé le bruit statistique préalablement ajouté aux données du jeu de [[données d'entraînement]] et qui produit des contenus graphiques ou audio nouveaux.
[[Modèle génératif]] obtenu par [[apprentissage automatique]], au cours duquel est éliminé le bruit statistique préalablement ajouté aux données du jeu de [[données d'entraînement]] et qui produit des contenus graphiques ou audio nouveaux.


== Complément ==  
== Complément ==  
Les modèles de diffusion sont des [[modèle génératif|modèles génératifs]], ce qui signifie qu'ils sont utilisés pour générer des données similaires aux données sur lesquelles ils ont été entraînés. Fondamentalement, les modèles de diffusion fonctionnent en détruisant les [[données d'entraînement]] par l'ajout successif de bruit statistique, puis en apprenant à récupérer les données en inversant ce processus de bruitage.  
Les modèles à bruit statistique sont des [[modèle génératif|modèles génératifs]], ce qui signifie qu'ils sont utilisés pour générer des données similaires aux données sur lesquelles ils ont été entraînés. Fondamentalement, les modèles à bruit statistique fonctionnent en détruisant les [[données d'entraînement]] par l'ajout successif de bruit statistique, puis en apprenant à récupérer les données en inversant ce processus de bruitage ou débruitage.  


L'instruction générative donnée à un modèle à bruit statistique peut être une image assortie d'un texte spécifiant par exemple l'application d'un style ou l'ajout d'un élément dans la composition du contenu à produire.
L'instruction générative donnée à un modèle à bruit statistique peut être une image assortie d'un texte spécifiant par exemple l'application d'un style ou l'ajout d'un élément dans la composition du contenu à produire.
Ligne 30 : Ligne 30 :
[https://en.wikipedia.org/wiki/Diffusion_model Source : Wikipedia]
[https://en.wikipedia.org/wiki/Diffusion_model Source : Wikipedia]


[[Catégorie:Publication]]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]

Dernière version du 20 novembre 2024 à 04:08

Définition

Modèle génératif obtenu par apprentissage automatique, au cours duquel est éliminé le bruit statistique préalablement ajouté aux données du jeu de données d'entraînement et qui produit des contenus graphiques ou audio nouveaux.

Complément

Les modèles à bruit statistique sont des modèles génératifs, ce qui signifie qu'ils sont utilisés pour générer des données similaires aux données sur lesquelles ils ont été entraînés. Fondamentalement, les modèles à bruit statistique fonctionnent en détruisant les données d'entraînement par l'ajout successif de bruit statistique, puis en apprenant à récupérer les données en inversant ce processus de bruitage ou débruitage.

L'instruction générative donnée à un modèle à bruit statistique peut être une image assortie d'un texte spécifiant par exemple l'application d'un style ou l'ajout d'un élément dans la composition du contenu à produire.

Français

modèle à bruit statistique

modèle de diffusion

modèle de diffusion probabiliste

Anglais

diffusion model

diffusion probabilistic model

latent diffusion model

LDM

score-based generative model

Source

Source : legifrance

Source : Wikipedia