« Algorithme des k plus proches voisins » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 41 : | Ligne 41 : | ||
[[Catégorie:Termino 2019]] | [[Catégorie:Termino 2019]] | ||
[[Catégorie:GRAND LEXIQUE FRANÇAIS]] | [[Catégorie:GRAND LEXIQUE FRANÇAIS]] | ||
Version du 16 août 2022 à 19:29
Définition
L'algorithme des k plus proches voisins est une méthode d'apprentissage automatique utilisée pour la classification et la régression afin de classer une donnée en entrée dans la catégorie à laquelle appartiennent ses k plus proches voisins dans l'espace des attributs.
Compléments
Note: L'algorithme des k plus proches voisins est un cas particulier d'un algorithme d'apprentissage à base d'exemples ou apprentissage à base de voisinage.
L'algorithme des k plus proches voisins est non-paramétrique, c'est-à-dire que son nombre de paramètres n’est pas fixe, il est potentiellement infini et dépend de la quantité de données traitée. Aussi, le modèle n’est pas fixe et grossit avec la complexité des données.
Français
algorithme des k plus proches voisins
KPPV
k-PPV
algorithme des plus proches voisins
Anglais
k-nearest-neighbors algorithm
k-NN
KNN
nearest neighbors algorithm
Source: Vincent, Pascal (2003). Modèles à noyaux à structure locale, thèse de doctorat, Université de Montréal, 188 pages.
Source: Mathieu-Dupas, Eve (2010). Algorithme des k plus proches voisins pondérés et application en diagnostic, Actes des 42èmes Journées de Statistique, Marseille, France, 8 pages.
Contributeurs: Claude Coulombe, Jacques Barolet, Julie Roy, Patrick Drouin, wiki