« Apprentissage par renforcement et rétroaction humaine » : différence entre les versions


m (Remplacement de texte : « ↵↵<small> » par « ==Sources== »)
m (Remplacement de texte : « ↵↵↵ » par «   »)
Ligne 15 : Ligne 15 :


'''ARRH'''
'''ARRH'''


== Anglais ==
== Anglais ==
Ligne 23 : Ligne 22 :


''' reinforcement learning from human preferences '''
''' reinforcement learning from human preferences '''


<!-- To understand RLHF, we first need to understand the process of training a model like ChatGPT and where RLHF fits in, which is the focus of the first section of this post. The following 3 sections cover the 3 phases of ChatGPT development. For each phase, I’ll discuss the goal for that phase, the intuition for why this phase is needed, and the corresponding mathematical formulation for those who want to see more technical detail.
<!-- To understand RLHF, we first need to understand the process of training a model like ChatGPT and where RLHF fits in, which is the focus of the first section of this post. The following 3 sections cover the 3 phases of ChatGPT development. For each phase, I’ll discuss the goal for that phase, the intuition for why this phase is needed, and the corresponding mathematical formulation for those who want to see more technical detail.

Version du 29 janvier 2024 à 10:30

Définition

En apprentissage automatique, l'apprentissage par renforcement et rétroaction humaine (ARRH) est une technique qui entraîne un modèle de récompense à partir de la rétroaction humaine et utilise le modèle comme fonction de récompense pour optimiser la politique d'un agent à l'aide de l'apprentissage par renforcement grâce à un algorithme d'optimisation.

Compléments

Ce type d'apprentissage est utilisé dans les générateurs de texte fondés sur les grands modèles de langue.


Le modèle de récompense est pré-entraîné pour que la politique soit optimisée afin de prédire si une sortie est bonne (récompense élevée) ou mauvaise (récompense faible).

Français

apprentissage par renforcement et rétroaction humaine

apprentissage par renforcement avec rétroaction humaine

apprentissage par renforcement à partir de la rétroaction humaine

ARRH

Anglais

reinforcement learning from human feedback

RLHF

reinforcement learning from human preferences

==Sources==

Source : huyenchip

Source : stanford

Source: Wikipedia

Source : Journal du Net