Apprentissage automatique
Définition
L’apprentissage automatique est un champ d’études de l’intelligence artificielle. Ce domaine se fonde sur les statistiques pour donner à l’ordinateur la capacité d’apprendre par lui-même à partir de jeux de données plutôt qu’à partir d’instructions explicitement programmées afin de s’acquitter d’une tâche.
On rencontre parfois le calque de l’anglais apprentissage machine et les termes apprentissage statistique et apprentissage artificiel pour désigner le même concept.
L’apprentissage automatique se divise en 3 grandes catégories : l'apprentissage supervisé,l’apprentissage non superviséet l’apprentissage par renforcement.
Compléments
L’apprentissage supervisé (supervised learning) consiste à apprendre à exécuter une tâche à partir d’exemples annotés par une personne. L’annotation est un processus par lequel on associe un exemple à la réponse que l’on désire apprendre.
En apprentissage supervisé l’algorithme cherche à minimiser l’erreur, c’est à dire l’écart entre la prédiction de l’algorithme et la vraie réponse (i.e. l’annotation).
En apprentissage non-supervisé ( unsupervised learning), l’algorithme découvre par lui-même des régularités statistiques et reconnaît des formes ou des structures dans les données.
L’absence d’annotation est ce qui distingue une tâche d’apprentissage non-supervisé d’une tâche d’apprentissage supervisé. L’apprentissage non-supervisé se fait sur la base de la ressemblance entre les exemples ou les données.
En apprentissage par renforcement (reinforcement learning), un agent apprend un comportement à partir d’expériences de façon à optimiser les récompenses reçues au cours du temps. Tout comme l’apprentissage non-supervisé, l’apprentissage par renforcement n’a pas besoin de données annotées.
L’apprentissage par renforcement se fait sur la base de récompenses ou de punitions reçues en retour d’une action exécutée par un agent dans son environnement.
L'apprentissage automatique comporte généralement deux phases:
1- L'entraînement du modèle sur des données afin de résoudre une tâche pratique, telle que traduire un discours, estimer une densité de probabilité, reconnaître la présence d'un chat dans une photographie ou participer à la conduite d'un véhicule autonome.
2- La mise en production où, le modèle étant entraîné, de nouvelles données peuvent alors être soumises afin d'obtenir le résultat correspondant à la tâche souhaitée. En pratique, certains systèmes peuvent poursuivre leur apprentissage une fois en production.
Français
apprentissage automatique
apprentissage machine
apprentissage statistique
apprentissage artificiel
Anglais
machine learning
automatic learning
Note: apprentissage automatique et apprentissage machine sont des désignations publiées au Journal officiel de la République française le 9 décembre 2018 et normalisées par l'ISO en collaboration avec la Commission électrotechnique internationale.
Contributeurs: Claude Coulombe, Jacques Barolet, wiki, Robert Meloche